Cost assessment of achieving BREF emission limits – an example of poorly designed environmental regulation

Jan Brabec

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Institut pro ekonomickou a ekologickou politiku

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

eac ade mia

IREAS

I€}P

Regulatory context

- July 2017 new emission limits for large combustion plants (applied from August 2021)
 - Best available techniques (BAT)
 - Coal-burning plants invested to comply with the IED
- Current technologies mostly not efficient to achieve BAT
- Lawsuits against the European Commission

Wrong perception about the situation of coal-burning plants

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

BAT emission limits

Pollutant	Size (MW)	IED (mg/Nm ³)	BAT – upper bound (mg/Nm ³)
NO _x	50-100	300	270
	100-300	200	200
	>300 (FBC boiler)	200	175
	>300 (PC boiler)	200	150
SO ₂	50-100	400	360
	100-300	250	200
	>300 (FBC boiler)	200	180
	>300 (PC boiler)	200	130
PM	50-100	30	18
	100-300	25	14
	300-1,000	20	12
	>1,000	20	8

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

eac ade mia

Derogations (Article 15 of the IED)

- Justified by disproportional costs
- Cost benchmark → the highest level of marginal costs that the plants can be required to spend
- No unified methodology → different approach in each EU member state
 - \rightarrow Development of a methodological Framework in the Czech Republic
- Unrealistic cost estimates
 - \rightarrow Cost analysis based on detalied microeconomic data

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

eac ade mia

Differences among countries

• 2018 state:

- 14 out of 22 had a methodology in place
- Most countries consider costs of implementation and operation of new technologies
- Labour costs, insurance and other factors considered less frequently
- Lower emissions to air and water considered as benefits
- Odour, noise or waste generation less often

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Assessing proportionality

- Only 5 member states had proper guidelines
- Various approaches:
- Benefit/cost ratio (0.7; 0.75)
- Scenarios
- Point system
- Costs mostly compared to benefits (external costs)
- Czech methodology compares costs to previous spending

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

IREAS

Cost estimates of pollutant abatement

Table 1

Overview of average and marginal costs of capturing a metric tonne of SO₂ and NO_x, from available relevant studies (in 2019 \$).

Study	SO ₂	NO _x	Country	Years
Boyd et al. (1996) ^a	60/1,358/21,248	_	USA	1994
Cofala et al. (2004)	1,156	_	Asia	2001
Coggins and Swinton (1996)	534	_	USA	1990-1992
Färe et al. (2005)	2,930-4,028	_	USA	1993, 1997
Fowlie et al. (2008) ^b	_	865/2,020/3,463/6,637	USA	2005, 2008
Jiang and Nolan (2000)	728-817	_	USA	2000
Karvosenoja and Johansson (2003)	1,248–1,694	_	Finland	2002
Keeth et al. (1992)	920-3,563	_	USA	1991
Lee et al. (2002)	5,557	31,721	Korea	1990-1995
Lee and Zhou (2015)	1,564-8,314	7,253–39,193	USA	1990-2010
Mekaroonreung and Johnson (2012)	542-2,152	3,910–39,951	USA	2000-2008
Rezek and Campbell (2007)	210–738	1,657	USA	1998
Singh and Rao (2015)	2,074–2,603	10,747–15,143	India	2014
Sun et al. (2014)	2,349-4,077	6,495–7,662	China	2012
Turner (1995)	260/2,535/34,726	2,149	USA	1985–1987
Vijay et al. (2010)	-	304/745/1,219/2,166	USA	2004

Source: Analysis of the cited papers.

^a Marginal costs at different levels of captured emissions (first metric tonnes; median; last metric tonnes).

^b Marginal costs at different levels of captured emissions (25%; 50%; 75%; ~100%).

I€)P

eac ade mia

Reasons behind inconsistent estimates

- Costs per tonne/MWe
- Marginal vs. Average cost
- Unknown initial and final emission concentrations
- Unknown assumptions about technologies (currently installed)
- Unknown utilization of installed capacity
- Inadequate data collection (models)

The conditions do not correspond to the situation of EU power plants after the introduction of BAT

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Marginal abatement costs

IREAS

I€P

Marginal abatement costs

Need for new cost estimates

Journal of Cleaner Production 352 (2022) 131600

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Costs of achieving emission limits in coal-burning power plants under the recent best available techniques regulation amendment: Evidence from national microeconomic data

Ondřej Vojáček^a, Jan Brabec^{a, b, *}, Jan Macháč^a

^a Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 1, 400 96, Ústí nad Labem, Czech Republic ^b Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00, Prague, Czech Republic

- Half of Czech installed capacity (above 50 MW)
- Semi-structured interviews
- Currently installed technologies + further potential
- Current regulation (derogation schemes)
- Ease of meeting stricter emission limits
- Impact of emission reduction on installed capacity and production
- Innovation cycles of individual technologies
- Spatial possibilities
- Costs of meeting current and BAT emission targets

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Costs

• Average costs between significant modifications to technology

- Yearly depreciation of the newly installed technologies
- Associated energy costs
- Associated costs of material
- Increased labour costs
- Fixed costs (e.g., insurance costs, licence fees, administrative costs, overheads)
- Indirect costs such as losses due to changes to the production and installed capacity
- Taxes and subsidies
- Costs associated with compensatory measures,² if such measures are allowed
- Prevented costs (e.g., lower need to purchase emission allowances; Wien lower costs of maintenance or monitoring; lower costs of labour, material, energy etc.)

Methodology

- Comparison of past expenditures with future expenditures
- 3 scenarios
- Meeting current emission limits
- Reasonable technology modification (may not achieve BAT limits)
- Technology replacement (always achieves BAT limits)

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Results (€)

eac ade mia

Pollutant	Reasonable technology modification	Technology replacement	European Commission estimate
NO _x	Up to 9,800	35,300-390,000	1,500-2,500
SO ₂	Up to 2,160	Up to 11,800	600-1,150
PM	Up to 7,850	40,000 up to hundreds of thousands	

- Reasonable modification significantly more expensive than the EU estimate
- Technology replacement cost larger by an order of magnitude

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

National impact of the regulation (\in)

Pollutant	Emissions captured	Reasonable modification	Technology replacement
NO _x	3,878	38 mil.	137 mil.
SO ₂	11,027	29 mil.	130 mil.
PM	412	3 mil.	16 mil.
Total		70 mil.	283 mil.

- Lower bound estimate
- Upper bound emission limit
- No mercury and other pollutants
- Only direct costs of regulation included (60%)
- Threat of closure \rightarrow costs of capacity replacement

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Findings

- The regulation does not respect investment cycle
- It is insufficient to only model cost estimates
- Improper setting of the emission limits
- Less strict emission limits → negligible environmental impact and significiantly lower costs
- Significantly stricter emission limits → large investments justified by large environmental impact
- Derogations \rightarrow more pollution?

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

I€)P

eac ade mia

Thank you for your attention!

Jan Brabec – <u>brabec@e-academia.eu</u>

Winter and Summer School on Energy Systems | June 21st 2022 | Technische Universität Wien

Institut pro ekonomickou a ekologickou politiku

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology I€P